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This paper describes an experimental study of turbulent boundary layers over 
two-dimensional spanwise groove and three-dimensional sandgrain roughnesses in 
the 'transition regime ' between hydraulically smooth and fully rough conditions. 
Mean-flow measurements show that a state of kinematic near-self-preservation is also 
reached by sandgrain roughness and not just by d-type grooved roughness alone as 
commonly believed ; sandgrain roughness simply requires an order-of-magnitude- 
longer length to reach such a state. The two roughness Reynolds numbers demar- 
cating the boundaries of the transition regime of k-type roughnesses are found to 
decrease with increasing roughness-element spanwise aspect ratio (span/height). A 
more important role of the upper-Reynolds-number limit of the transition regime in 
the drag behaviour is indicated. The two Reynolds-number limits of the transition 
regime correlate with the two critical Reynolds numbers that describe the stability 
of the vortex-shedding process existing behind a similar but isolated roughness 
element lying submerged in an otherwise laminar boundary layer. The results provide 
a guideline for reducing k-type rough-wall drag by lowering the spanwise aspect ratio 
of the roughness elements. The vortex-shedding process in rough-wall turbulent 
boundary layers is described by the stability parameter U, (F/v) t  whose value is the 
same for all roughnesses examined herein; here U, is the friction velocity, is the 
mean time period of vortex shedding and v is the kinematic viscosity of the fluid. 

1. Introduction 
1.1. Roughness function 

The effect of surface roughness on turbulent-boundary-layer characteristics is 
commonly expressed by the roughness function AU/U,.  Hama (1954) showed that 
this function is related to the coefficient of local skin friction cf through the following 
relationshir, : 

""=(E? -(q 
u~ 'f smooth 'f rough ' 

where cf = 7,J&Prn, 7, being the wall shear stress, p the fluid density, U ,  the 
free-stream velocity and U, = ( ~ , / p ) t .  Equation (1) applies when the Reynolds 
number Re,, is the same for the smooth and rough walls; here Re,, = Urn S*/v, where 
6* is the displacement thickness and v is the kinematic viscosity of the fluid. In  other 
words, roughness function is a measure of the increase in local drag due to roughness. 
Earlier, Nikuradse (1933) had shown in a pipe flow that roughness leads to a 
downward shift in U/U,, where U is the local mean velocity (and hence the A 
introduced by Hama) of the logarithmic part of the velocity profile from the law of 
the wall for a smooth surface. However, instead of this downward shift in U/Ur,  
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FIGURE 1. Roughness function in k-type roughness. 

Nikuradse proposed a more involved measure (known as B) of the roughness effect 
and it appears to be Hama (1954) who first showed that the downward shift is in 
fact a physically more meaningful and simpler measure. 

Figure 1 shows a portion of Hama’s roughness-function data compilation. Three 
regimes can be discerned. These are generally termed hydraulically smooth, tran- 
sitional and fully rough. The roughness-function behaviour is universal in the 
hydraulically smooth and fully rough regimes. However, in the transition regime, 
each roughness has its own characteristic behaviour. In 1956, Clauser noted, ‘One 
of the challenging problems of current boundary layer research is to determine why 
these curves have the shapes they do and to predict the shape of the curve from the 
nature of the roughness elements’. Since that time, the transition regime has received 
only limited attention and the questions still remain unanswered. 

The roughness function of the roughnesses in figure 1 depends on a Reynolds 
number based on the height of the roughness element k. For this reason, they have 
come to be known as k-type roughness (Perry, Schofield & Joubert 1969). However, 
experiments also show that (see Perry et al. 1969 for a review) the k-type scaling 
is not obeyed by a grooved roughness when the cavities are narrow (w/k < 1; 
figure 2). These are known as d-type roughness (discussed in 5 1.4). This paper deals 
largely with k-type roughness. 

1.2. Limits of the transition regime in k-type roughness 
Schlichting (1979) summarized the physical interpretation of the roughness regimes 
as follows. To be hydraulically smooth, the roughness elements must be submerged 
within the viscous sublayer. In the transition regime, the elements are only slightly 
thicker than the sublayer and their form drag is approximately equal to the increase 
in drag above the smooth-wall case. In the fully rough regime, the roughness elements 
are much larger than the sublayer thickness and most of the drag is roughness-element 
form drag. 
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The lower-Reynolds-number limit of the roughness transition regime (U,  k / v ) ,  was 
studied by Prandtl & Schlichting (1934) and Goldstein (1936). (Here k: is the height 
of the roughness element.) Based on the sand-roughened pipe-flow experiments of 
Nikuradse, the former authors observed that the surface is hydraulically smooth 
below a roughness Reynolds number Re, (=  kU,/u) of 7. A physical interpretation 
of this Reynolds number has been offered by Goldstein, who proposed that this 
represents the onset of a periodic vortex shedding behind the roughness elements. 
Goldstein’s proposal for the turbulent flow is in fact an extension of an earlier work 
by Schiller (1932) who suggested that a laminar boundary layer remains hydraulically 
smooth till a roughness element starts shedding vortices. Schiller’s suggestion is far 
reaching because it relates drag to vortex shedding. In  the analyses of Schiiler and 
Goldstein, (U,  k / v ) ,  can be deduced if the critical Reynolds number Re, €or the onset 
of vortex shedding behind a single roughness element is known. Usually Re, has been 
taken to be the same as its value for a circular cylinder in the free stream. In other 
words, it is implied that roughness wakes resemble a Karmhn vortex street with a 
universal value of Re,. 

Whilst there is no data to suggest that Re, depends on whether an obstacle is in 
the free stream or resting on the surface, the wall-proximity experiments of Furuya 
& Miyata (1972) reveal several differences in the wakes depending on what the aspect 
ratio of the obstacle is. For example, Re, drops by more than half when the cylinder 
aspect ratio (Z/d) increases from 1 to 6 (figure 25). Here 1 is the span and d is the 
diameter of the cylinder. Therefore, Re, does not have a universal value. Furthermore, 
the wall proximity increases the Strouhal number for circular oylinders; rtt Re = 40, 
it is about 6 times that in the free stream. Here Re = U, d/v .  The latter observation 
led Furuya & Miyata to question if the very low-Reynolds-number wake i s  indeed 
a KhrmBn street. 

There is another difference between the KBrmtin street in the free stream and the 
wake of a three-dimensional obstacle resting on the surface. In addition to the vorhx 
loops, the latter contains the so-called necklace vortex which straddles the obsbaole. 
Furuya & Miyata (1972) have observed that the necklace vortiosp are more stable 
than the periodically shed vortex loops. The necklsoe vortices have never been 
considered by any author to have any role in the rough-wall turbulent boundary 
layers. The experiments of Glotov & Korontsvit (1983) indicate that this may be 
justified. They showed that the upstream separation zone is substantially reduced 
when a small control needle is placed ahead of an obstacle resting on the surface, This 
suggests that one consequence of the interaction between the roughness elements is 
weaker necklace vortices. This aspect needs further investigation. 

The upper critical roughness Reynolds number (U ,  k/u), demarcating the tran- 
sition and fully rough regimes has not received any special attention. Rotta’s (1960) 
analysis of Nikuradse’s sand-roughened pipe-flow measurements indicate that, at an 
U, k / u  of 55, there is no effective visoous sublayer. But, it i s  not known what happens 
to the above-mentioned unsteady wake at this Reynolds number. 

1.3. Transition regime in k-type roughness 
The transition regime has been studied experimentally by Colebrook & White (1937) 
and Hama (1954). The former authors studied sand-roughened pipes. The roughness 
function versus Reynolds number behaviour for uniform sand agreed well with that 
of Nikuradse (1933). Their experiments also show that, in the transition regime, the 
presence of only about 5 % of large grains in the roughness increases the roughness 
function substantially from the uniform-sand level. Such a non-uniform sand 
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roughness has a lower (U,  klv),. A non-uniform-type roughness could also be 
produced if the roughness elements are ‘sparsely’ placed on a smooth surface. In 
the present study, such non-uniform types of roughness have not been considered. 

Hama examined wire-mesh roughness. The roughness function for this surface is 
greater than that for sandgrain roughness and the critical Reynolds number (U,  k/v), 
is lower. Hama’s experiment clearly indicates that the upper limit of the transition 
regime, viz. (U,  klv),, does not have a universal value. The frequently quoted value 
of (U, k/v), of 55 is valid for sandgrain roughness only. (Sometimes a limit of 70 
(Schlichting 1979), instead of 55, is quoted. However, in view of Rotta’s (1950) 
evaluation of Nikuradse’s uniform-sand data a value of 55 is considered the result 
of a more refined analysis). 

The concept of equivalent sand roughness, k, is sometimes introduced in modelling. 
Schlichting (1936) defined k, as the size of a sandgrain in Nikuradse’s experiment that 
has the same resistance as the particular roughness being studied. Empirical forms 
of the resistance behaviour of sandgrain roughness in the transition regime has been 
given by Colebrook & White (1937) in terms of k,. However, k, is devoid of any 
physical significance and its determination is problematic. The roughness function 
in the transition regime has been formulated empirically also by Dvorak (1969) for 
several types of roughness. 

1.4. Roughness density 

In  k-type roughness, attempts have been made (Bettermann 1965; Dvorak 1969; 
Simpson 1973) to express the roughness dependence of the roughness function versus 
U, k/v behaviour in terms of the roughness density. The approach covers the fully 
rough regime only where the roughness-function distribution is semilogarithmic 
irrespective of the type of roughness. Both Bettermann and Dvorak have defined the 
roughness density A, as the ratio of the total surface area to roughness area. They 
considered mainly the two-dimensional roughness normal to the flow where A, = A / s  
(figure 2). Note that, unlike 1, A is a streamwise and not a spanwise distance. Later 
on, Simpson considered a wider variety of roughness. He showed that the roughness- 
function variation correlates better if the roughness density (Ak) is defined as the ratio 
of the total surface area to the total roughness frontal area normal to the flow. Thus, 
for two-dimensional roughness normal to the flow, A, = A/k. Since k is related to form 
drag, its inclusion is more appropriate than s. In any case, Simpson’s compilation 
of data shows that even A, does not collapse the various data to the two relationships 
of Bettermann and Dvorak. Systematic large variations between roughnesses can be 
discerned in the compilation and they can be described by Dvorak’s relationship alone 
but with a variable slope. Thus, the definition of the roughness density A, is still 
inadequate and at least yet another unknown variable is involved. The present results 
show that this variable is I ,  the span of the roughness elements. 

Perry et al. (1969) have shown that when a spanwise groove roughness consists of 
narrow cavities (w/k < 1 ; figure 2), in a zero pressure gradient, its roughness function 
does not depend on kU,/v (unlike a wider cavity (w/k > 1)  or sandgrain roughness) ; 
it depends on d UJv, where d is an outer-layer scale. Since the characteristic behaviour 
of a narrow cavity roughness was first detected in a pipe, such a roughness has come 
to be known as the d-type, where d stands for the pipe diameter. 

Thus, there are two types of roughness, viz. d- and k-type. Perry et al.’s work 
clarifies one of the effects of roughness density. In the d-type, the cavity flow is more 
stable and it is not known why a large-scale length, viz. d or 6, is involved. (Here 
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6 is the boundary-layer thickness.) Nothing is known about the transition regime in 
a d-type roughness. 

1.5. Present work 
The distributions of roughness function in figure 1 show that, in a k-type roughness, 
compared with uniform sand, a wire-mesh roughness has a lower (kU,/v), and a higher 
AU/U,. Therefore, it  can be suspected that (kUJu), drops with increasing spanwise 
aspect ratio (A,) of the roughness elements. Here, A, is taken as the ratio of the span 
to height of the roughness elements (Z/k, figure 2). In  a distributed three-dimensional 
roughness, 1 is the largest spanwise lengthscale of the roughness elements in the 
(2, 2)-plane. In  a sandgrain A, is O( 1) ; in a square wire mesh, A, > O( 1 ), the side length 
of the square being 1, and in a spanwise two-dimensional groove, A, 9 O(1). Thus, 
a forest of thin tall needles (h,+O) and two-dimensional grooves (A,+ 00) are the 
limiting types of roughness from the point of view of the spanwise aspect ratio. Figure 
1 also shows that, in the fully rough regime where there is some available data, the 
k-type spanwise groove roughness has a higher roughness function than the wire 
mesh. Therefore, if the above dependence on aspect ratio is correct, the groove 
roughness should have the lowest (kU,/v), of all varieties of k-type roughness. The 
present study was initiated to see if this hypothesis of dependence of (kU,/u) ,  on 
spanwise aspect ratio could be confirmed for k-type roughness. 

In the following, an experimental investigation in k-type rough-wall turbulent 
boundary layers is described which examines the above-mentioned dependence of 
(k UJu),  on A,. Measurements, including vortex-shedding frequencies, have been 
made for two-dimensional spanwise groove and sandgrain roughness in the transition 
regime. These data have been examined for self-preserving behaviour and the 
correlation of (kU,/u),  and (kU,/u),  with the critical Reynolds numbers of the 
stability of the vortex-shedding process behind isolated roughness elements in a 
laminar boundary layer ; in addition, the quasi-periodic vortex-shedding process 
behind a roughness element has been studied. Measurements have also been per- 
formed in a d-type grooved wall; its self-preservation and vortex-shedding charac- 
teristics have been compared with those of k-type walls. 

2. Experiments 
2.1. Roughness 

Two roughness geometries have been tested, a two-dimensional roughness pattern 
and a sandgrain roughness. The roughness dimensions are given in table 1. Micro- 
photographs of the roughnesses are available elsewhere (Bandyopadhyay 1986). For 

k W 8 1 

d-type groove Aluminium 0.33 0.23 0.30 28 
k-type groove Aluminium 0.31 0.94 0.23 28 

Roughness Material (mm) (mm) (mm) (em) 

Sandgrain Aluminium 0.56, 0.77 - - - 
oxide (50 and 36 grits 

respectively) 

TABLE 1.  Roughness dimensions 
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FIGURE 2. Groove geometries studied by various investigators: 1 ,  present experiments; 2, Perry 
et d. (1969); 3, Townes & Sabersky (1966); 4, Hama (1954); 5, Antonia & Luxton (1971); 6, Osaka 
et a2. (1982); 7, Perry & Joubert (1963); 8, Moore (1951); 9, Bettermann (1965); 10, Klein (1977). 

the present experiments, the grooves have been machined out of 1.25 cm thick 
aluminium plates. 

The groove geometry is defined in figure 2. The figure contains a summary of groove 
geometries studied by various investigators. Hama's (1954) wire mesh has been 
included for comparison. The present groove heights are the smallest examined thus 
far. It is clear that the grooves studied herein are also the ones most documented, 
viz. w = k in the d-type and w = 3k in the k-type. The ratio w l k  could have an 
important effect on localized physics such as separation reattachment within the 
groove. 

A cellular flow is likely to develop within a cavity when the incoming boundary 
layer is thin (Slk < 1). If S is known, figure 2 can be utilized to determine whether 
the incoming boundary layer is relatively thick or thin. In  the present experiments, 
the lowest S/k is 35. Since this is large, the flow within the d-type grooves can be 
assumed to be two-dimensional and not cellular over time. The generally large values 
of Slk in all the roughness experiments reported here ensure that (2) and (3) in $4.1 
can be used to describe the rough-wall velocity profiles. 

The ratios S/k and wlk  determine the curvature of waviness of the mean 
streamlines in the neighbourhood of the roughness elements. The present lowest Slk 
is higher than those of Antonia & Luxton (1971) and Perry et al. (1969). Since wlk 
is approximately the same in these three k-type experiments, a higher Slk should 
mean reduced streamline waviness. Such waviness complicates the analysis of a 
control volume taken around a roughness element owing to the presence of a 
shear-stress term from the mean flow, viz. UV (Antonia & Luxton 1971). Here U and 
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FIQURE 3. Drag characteristics of a 91.5 cm long x 28 cm wide surface. 

V are the local mean velocities along the x- and y-directions respectively. The 
quantitative effect of UV is not yet known. But, since Slk is large, the effect of the 
waviness of the streamlines is presumed to be small in the present experiments. 

The results for two sandgrain sizes are considered. The grain sizes are nearly 
uniform. Grit 36 was chosen because its drag versus speed characteristic is virtually 
the same as that in the k-type groove (figure 3). This allows comparisons between 
the two surfaces. The sandgrains used are sandpapers 23 cm x 28 cm in size which 
are stuck to the surface using double-sided tapes. In one experiment, the entire 
6.28 m length of the splitter plate is covered with cloth-backed grit 50 sandpapers 
(table 2). This may be one of the largest lengths of sandgrain-roughened wall studied 
in a laboratory so far and allowed verification of the existence of R o t t a ’ ~  condition 
of self-preservation. In the 7 in. x 11 in. tunnel (§2.2), the plates containing the 
groove and sandgrain roughnesses are aligned such that the tips of the roughness 
elements are at the same level as the upstream smooth wall. This prevents the 
formation of any separation bubble at the leading and trailing edges of the flat-plate 
model. This alignment is crucial in the drag-balance measurements. 

2.2. Wind tunnels 
The test-plate configurations are given in table 2. The experiments were performed 
in two low-speed wind tunnels. All boundary layer surveys on the k- and d-types of 
grooved roughness and all drag-balance and hot-wire measurements were made in 
the Langley 7 in. x 11 in. Low-Speed Wind Tunnel located in the Viscous Flow 
Branch. The boundary-layer surveys on the sandgrain roughness were made in the 
2 ft. x 3 ft. Boundary Layer Channel also located in the Viscous Flow Branch. 

The 7 in. x 11 in. tunnel is of the return-circuit closed-test-section type (Bandyo- 
padhyay 1986). Following a suggestion by Mr D. M. Bushnell, the contraction was 
provided with a rather short concave region followed by a much more gradual convex 
length. This design minimized the contamination by Taylol-Gortler vortices in the 
test-section floor. This could be relevant since measurements were taken on the 
test-section floor rather than on a splitter plate. The maximum tunnel speed was 
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about 40 m/s and the turbulence intensity in the test section was below 0.2 yo. The 
variation in temperature of the medium was less than 1 OF during a boundary-layer 
survey. The free-stream velocity was continuously monitored and the variation was 
less than 1 % during a survey. The test section was 91.5 cm long and 18 cm x 28 cm 
in cross-section. One of the sidewalls was motorized to produce a taper in the test 
section to compensate for the boundary-layer growth and generate a zero pressure 
gradient in the streamwise direction. Spanwise measurement of momentum thickness 
8 at a smooth wall showed the effective region of the two-dimensional flow to reduce 
only slightly - from 20 cm at x = -2.5 cm to 18 cm at x = 80 cm owing to the corner 
flows. The reduction was higher - from 18 cm at z = 35 cm to 10 cm at x = 80 cm 
in the worst case, viz. the k-type grooved wall. 

The 2 ft. x 3 ft. tunnel is also of the return-circuit closed-test-section type. The test 
section is 6.28 m long and 61 cm x 91 cm in cross-section. The boundary-layer surveys 
were performed on a 3 cm thick aluminium honeycomb sandwich splitter plate having 
a profiled leading edge and mounted horizontally in the test section. The roof above 
this plate was slightly tapered to generate a zero pressure gradient. The surveys were 
made a t  a free-stream speed of 40 m/s which could be held within 0.5 % during a run. 
The free-stream turbulence intensity was 0.1 yo in the test section. Both the tunnels 
were equipped with computer-controlled probe traverse mechanisms. The probe 
movement was measured by optical encoders to within k0.05 mm. 

2.3. Measurement procedure 
One of the troublesome areas of rough-wall investigations is the determination of the 
local wall resistance. The procedure followed is discussed in $4, To provide an 
independent, although indirect, check on these estimates, the drag experienced by 
an area of about 28 cm wide x 91.5 cm long of the test-section floor occupied by the 
roughness model was measured by a drag balance (designed by Dr L. M. Weinstein) 
in the 7 in. x 11 in. tunnel (Bandyopadhyey 1986). The model was made free floating 
by supporting it on an air bearing. The drag was measured by the deflection caused 
on a beam which was measured by a pair of piezoresistive strain sensors. The drag 
range of operation was 0.03 to 2 N. Typically, a drag of 1 N caused a horizontal 
deflection of 0.1 mm. The balance was calibrated against known weights. The 
calibration slope remained virtually the same over the full range and showed no drift 
over a period of six months. To keep the model free floating, it was provided with 
a gap of about 1 mm at the leading and trailing edges and at the junctions with the 
sidewalls. Any leakage through these gaps was virtually eliminated in two ways. 
First, the test-section pressure gradient was set to zero at each free-stream speed by 
moving one sidewall. Secondly, a large jacket was built around the test section and 
a continuous suction wm provided to balance the static pressures between the test 
section and the jacket. Typically, a variation of k0.5 Pa in the jacket/test-section 
differential pressure was found to cause a change of only f0.7 yo in the drag. In most 
of the speed ranges it was possible to set the differential pressure to within a much 
smaller range. The uncertainty in the drag measurements was established by 
repeating the measurements after turning the model by 180' and realigning it afresh. 
The drag measurements could be reproduced to within f 1.5 yo. 

The mean-velocity profiles were measured using flattened Pitot tubes and electronic 
manometers. The measurements of momentum thickness 8 could be reproduced to 
within k0.6 %. The hot-wire measurements were taken using a straight prong, 1 mm 
long, platinum-coated tungsten single wire 5pm in diameter and a constant- 
temperature anemometer whose output was linearized. The digitization of the output 
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signal and the computations of short-time autocorrelation were done using a 
programmable processor. The shortest sampling time was 10 ps. 

. 

o n n o  . 

6 -  - 
e n n o n n  

3. Self-preservation 
The streamwise distributions of the boundary-layer integral quantities viz. mo- 

mentum (e), displacement (a*) and boundary-layer (6) thickness and shape factor (H) 
are shown in figures 4 and 5 for the d- and k-type groove roughness respectively. In 

H 
1.7 

1.6 (0) 

1.5 

10 

6x10 I i a l y -  
(.I 

0 
- 80 - 40 0 40 80 

x (cm) 

" 

FIQURE 4. Distributions of integral quantities in a d-type grooved wall; U ,  = 27.5 m/s. 

In  

'b /I 

layer 

I I ' ' 0  
-40 0 40 80 

0 - 80 
x (cm) 

FIGURE 5. Distributions of integral quantities in a k-type grooved wall; U ,  = 28 m/s. 
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FIGURE 6. Defect-layer similarity in (a) d-type and ( b )  k-type grooved walls. 

FIGURE 7. Distributions of integral quantities in a smooth-to-rough (sandgrain) wall ; 
U, = 40 m/s. 

both, the roughness starts at  x = 0 and is preceded by a smooth wall. In the a?-type 
wall, the shape factor reaches a nearly constant value after z = 20 cm; but the k-type 
wall shows such a tendency only beyond 60 cm. In the similar L- type  grooved-wall 
experiments of Antonia & Luxton (1971) H also reaches a nearly constant value after 
a similar distance. In  the region of constant H, the integral quantities have a linear 
variation and have a common virtual origin. Figure 6 (a, b) shows that the velocity- 
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FIQURE 9. Defect-layer similarity in sandgrain-roughened walls; (a) smooth-to-rough caae and 

( b )  full-length rough case; U ,  = 40 m/s. 

defect profiles are self-similar in the region of constant H .  The above kinematic results 
indicate that. near-self-preservation has been reached earlier in the d-type grooved 
wall. The k-type grooved wall also probably reaches such a state, but the present wall 
length is too small to confirm that. Perry et al. (1969) have shown that Rotta’s (1962) 
condition of self-preservation is satisfied by a d-type wall. The present results verify 
that finding. After the present work was completed, it was found that Osaka et al. 
(1982) had also verified the existence of self-preservation in a d-type wall. 

The growths of the above boundary-layer integral quantities in sandgrain- 
roughened walls are shown in figures 7 and 8 for a smooth-to-rough and a full-length 
rough wall respectively. The wall shear stress reaches a constant level for both walls. 
In the region of constant wall shear stress, the thicknesses vary linearly and have 
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a common virtual origin; thus, H is also constant. Figure 9 shows the self-similar 
nature of the velocity-defect profiles in that region. Thus, the kinematic results in 
figures 7-9 indicate that Rotta’s condition of self-preservation is reached by the mean 
flow in a (sandgrain-roughened) k-type wall also. A k-type distributed roughness 
requires an order-of-magnitude-longer length than a d-type wall to reach such a state. 
This result has not been reported earlier probably because most sandgrain rough-wall 
experiments have not been done on a long enough test plate. It will be interesting 
to see if the rough-wall boundary-layer structure scales in the self-preserving region 
have also reached a state of kinematic equilibrium. 

4. Local wall shear stress 
The problems associated with the determination of the local wall resistance in a 

rough wall boundary layer are well known. The heights of the two-dimensional 
grooved roughnesses studied here are rather small and it is not practical to determine 
the pressure component of the drag by pressure tapping the individual roughness 
elements. Also, in the transition regime of roughness, the pressure component does 
not constitute the total drag because the viscous frictional part is non-zero. In the 
following, the method used to determine the local wall shear stress and checks made 
thereto, are described. 

4.1. Determination of wall resistance from mean-velocity projles 
An origin (figure 20) is required to represent the rough-wall mean-velocity profiles 
in the conventional boundary-layer format. However, the determination of this 
origin presupposes a knowledge of the local wall shear stress. In  the present work, 

0 0.2 0.4 0.6 0.8 1 
UP02 

FIC~JRE 10. Laminar velocity distribution over a k-type grooved rough wall compared with 
Blasius profile; Ree = 270. 
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FIGURE 11 .  Low-Reynolds-number mean-velocity distributions over a k-type grooved rough wall 
compared with the law of the wall over a smooth surface. 

this involved a minor iterative process. The procedure followed in the determination 
of the origin in y is described in $5.1. 

Since roughness does not have any effect on the mean flow in the regime of 
hydraulic smoothness, it was thought that analysing the velocity profiles at  low 
Reynolds numbers would be instructive. This exercise also provided an independent 
confirmation of the fact that in the downstream region of the k-type wall, the y-origin 
is located virtually at the bottom of the groove. Figure 10 shows a laminar velocity 
profile over the k-type groove wall measured a t  a free-stream speed of 2.5 m/s at 
z = 66 cm. The y-origin in this figure (and in figure 11) has been assumed to be a t  
the bottom of the groove because the station is far downstream from the region of 
initial smooth-to-rough changeover. The measured profile agrees well with the Blasius 
profile (except in a small region near the wall), the 8-values being within 4 % of each 
other. The roughness Reynolds number U, k/v of the layer is 1.6. The virtual-distance 
Reynolds number of the profile ( U ,  z ’ / v )  is 1.66 x los, which is less than the critical 
Reynolds number of 5 x lo6 to lo8 on a smooth flat plate. 

I I 0 Present data I 

(4 I I 
0 2000 

Re, 

FIGURE 12. (a) Low-Reynolds-number rough-wall shape factor and ( b )  coefficient of skin friction 
compared with results in a smooth flat plate (from Purtell et al. 1981 ; -, Landweber; ---, Coles; 
---, Schoenherr; --, Granville; smooth-wall measurements fall in the hatched region). 
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There is no information available on the nature of the laminar-to-turbulent 
transition over a grooved wall (Guven, Fare1 & Pate1 1983). The mean-velocity 
profiles have been measured in the fully turbulent flow over the k-type grooved wall 
at  x = 66 cm at an U,k/v of about 4. Two profiles are shown in figure 11. The 
momentum-thickness Reynolds numbers Re,( U ,  O/v )  are 670 and 760. The y-origin 
is taken at the bottom of the groove. The smooth-surface law of the wall has been 
fitted as shown to determine the coefficient of local skin friction cr. Figure 11 shows 
a slight increase with Re, in the extent of the log layer in wall coordinates as has been 
observed by Purtell, Klebanoff & Buckley (1981) in a smooth flat plate. The cf, H 
and Re, values are then compared in figure 12 with the recent low-Reynolds-number 
measurements and compilation of data by Purtell et al. The agreement between the 
rough- and smooth-wall data is reasonable. These results show that the rough wall 
being examined is well behaved. 

The local wall shear stress was determined from the mean-velocity profiles in the 
following way. Measurements in rough-wall boundary layers usually do not penetrate 
the viscous sublayer and rarely cover most of the buffer layer. Clauser (Hama 1954) 
has described the velocity profile in the logarithmic part as 

-- u,-u - --(5.6 log- '" +0.6), u, &* U ,  

applicable in the inner region y U,/v 2 32.5 and yUT/6*U, < 0.045 and Hama (1954) 
described the profile in the outer layer by the empirical relationship 

u,-u 
(3) 

which applies in the region 0.15 < y/S < 1 for zero pressure gradient and low-free 
stream-turbulence-level flows (Monin & Yaglam 1971). 

Equation (3) is another description of the so-called 'law of the wake'. Equations 
(2) and (3) connect smoothly at y/S = 0.15 or yU,/S*U, = 0.045. Furthermore these 
two equations describe the velocity profiles no matter whether the wall is smooth or 
rough. With the availability of convenient graphics software packages it is a 
relatively easy matter to choose a value of U, by trial such that (2) and (3) will 
describe the measured profiles. The steps followed to determine the final values of U, 
and E are given below. In  the 7 in. x 11 in.,tunnel, the variation in the smooth-wall 
cf with x appeared to be small for first-estimate purposes; for a start, the variation 
was assumed to be small in the rough walls as well ignoring the jump in cf at the 
upstream end. This allowed the plate-drag measurements ($4.2) to be used to 
determine the first estimates of U,. In  the 2 ft. x 3 ft. tunnel, the do/& values were 
used to obtain the first estimates. On the other hand, first estimates of e were obtained 
by studying the trend in the literature : in a k-type groove, somewhat away from the 
smooth-to-rough transition, E was taken to be equal to k; in a d-type groove, E was zero 
at x = 0 and was assumed to increase linearly (in view of self-preservation) to +k at 
2 = 90 cm. Thus the first estimate of the y-origin was assumed to be near the groove 
top in the d-type and near the groove bottom in the k-type grooved walls. Holding 
6 at the first estimate, the best velocity-profile match was then searched by trial and 
error to determine what turned out to be the final U, in most cases. The final value 
of E was then obtained by the method of Furuya et aE. (1976) (35.1) using the 
just-calculated U,. This finale, however, was not found to affect the U, used in its 
estimation except in the far-upstream regions of the rough walls. The roughness 
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FIGURE 13. Typical set of measured and calculated velocity profiles in the d-type wall: 
. -  _ -  

U, = 27.5 m/s. 

FIGURE 14. Typical set of measured and calculated velocity profiles in the k-type grooved wall: 
U, = 28 m/s. 

function was calculated using the final estimates of U,. Since this method has not 
been used previously it requires a closer scrutiny. 

The popular Clauser chart method of determining local wall shear stress in a smooth 
wall also is basically a profile matching technique. However, since it does so only in 
the logarithmic region, which is thin, frequently there are only a few data points to 
work with. In  contrast, the present profile matching covers virtually the entire profile. 
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FIGURE 15. Typical set of measured and calculated velocity profiles in the smooth-to-rough _ -  
(sandgrain) wall. 
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FIQURE 16. Typical set of measured and calculated velocity profiles in the full-length 
sandgrain-roughened wall. 

Figures 13-16 provide examples showing the quality of match between the 
measured and calculated profiles in the wall configurations (a), (b), ( d ) ,  and ( e )  in 
table 2. The U, involved in these calculated profiles have been used as the final 
estimate. The measured and calculated profiles have also been plotted in a defect-law 
form, to examine the near-wall region closely. Except in a small upstream region in 
the k-type grooved wall, where there is an abrupt change in the boundary condition, 
all measured and calculated profiles agree well. 

Two preliminary checks were made on the wall-shear-stress values obtained by the 
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FIGURE 17. Skin-friction results obtained by profile matching compared with (4); the hatched area 
indicates where the smooth and rough wall data of Schultz-Grunow and Hama (1954) fall. 

above procedure. The first was provided by the measurements made on a smooth wall 
as shown in figure 15. The wall shear stress in a smooth wall was measured by a 
Preston tube, Clauser chart and Ludwieg-Tillman relationship. The present method 
yielded cf values in good agreement with these conventional smooth-wall methods. 
The second check was made in the self-preserving flows over a sandgrain roughness 
where the wall shear stress could be obtained accurately by employing the momentum 
integral equation. The two wall-shear-stress values were in reasonable agreement. 

An indirect check on the method is provided in figure 17 where the present 
sandgrain and k-type grooved-rough-wall data are compared with those of Hama 
(1954). The agreement is very good. All the measurements also agree with the 
relationship 

where 
(4) 

The value of G used is about 6.1 as found in a zero-pressure-gradient smooth-flat-plate 
boundary layer. 

4.2. Drag measurements 
Finally an independent, although indirect, check has been made on the above 
procedure of velocity-profile matching to determine the local wall shear stress. 
Drag-balance measurements have been performed on 91.5 cm long x 28 cm wide 
smooth and rough surfaces. The measurements are shown in figure 3. These drag 
measurements also provided the first estimate of the wall shear stress to be used in 
the procedure of profile matching by trial. The centreline streamwise variation in cf 
is then obtained by the above method; figure 18 is an example of cf obtained in the 
k-type grooved wall at a free-stream speed of 28 m/s; the uncertainty in the cf values 
is about +0.0002. The figure also shows the cf estimates obtained from the 
momentum integral equation. When these estimates are used in a plot like figure 17, 
the agreement with (4) and Hama's results turns out to be poor. Assuming a 
two-dimensional nature for the limiting streamlines, the drag on the 91.5 cm x 28 cm 
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FIGURE 18. Distribution of cf obtained by velocity-profile matching compared with that from the 
momentum integral equation: k-type groove roughness; U ,  = 28 m/s. 
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FIGURE 19. Drag-balance measurements on a 91.5 cm long x 28 cm wide surface compared with 
calculated values. 
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plate has been calculated using the cfvalues obtained by both the momentum integral 
and profile matching methods. The momentum integral results do not agree well with 
the direct drag measurements. However, as figure 19 shows, the drag values based 
on the profile matching method agree well with the drag-balance measurements. 
Consequently, all local wall-shear-stress values reported in this paper have been 
obtained by the profile matching method. 

5. Lengthscales in a smooth-to-groove wall 
5.1. Error in origin 

During measurements, the y-distances have been measured from the tips of the local 
roughness elements (figure 20). However, to arrive at a logarithmic velocity 
distribution, which is assumed to exist for a rough wall as well as for a smooth wall, 
the y-origin has to lie some distance below the tips of the roughness elements. This 
distance E is called the error in origin. Perry et al. (1969) have suggested that it is 
ti measure of the interaction between the mean flow and the roughness. They have 
also developed a modified Clauser plot to determine B. Perry et al. could successfully 
use this method because, in their adverse-pressure-gradient experiments, B is larger. 
However, in the present experiments, their method could not be used satisfactorily 
because the pressure gradient is zero and both k and B are rather small. In comparison 
to Perry et al., Furuya et al. (1976) have proposed a more straightforward method. 
This has been used in the present study and is briefly described below. 

and 
S* respectively such that 

Let the displacement thickness in the yT and y-coordinates (figure 20) be 

and 

10-8 10-2 10-1 

FIGURE 20. Plot used to determine the error in the origin by the method of 
Furuya et d. (1976). 

QT ur/8$ 
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where, 8: is the displacement thickness in the range 0 < y < 8. Substituting these in 
(2), the following relationship is obtained: 

-- u,- u - -5 .6log@=-5.6log [ 1+ ($";,) - ( ~ ~ ~ ~ ~ ' ] + [ 5 . 6  - log(l+s)-O.6]. 

(5 )  
u7 8:: u, 

Equation (5 )  is plotted in figure 20 for various values of the parameter (cU,)/(S$ U,). 
The last bracketed term in (5 )  is constant at a station and has been ignored in the 
plot because it merely displaces the plot bodily. The measured profiles are superposed 
on figure 20 and e is determined from the parameter that allows agreement with the 
measurements. 

Two mean-flow lengthscales describe the region of changeover from smooth to 
rough in a boundary layer developing over the grooved walls. They are the error in 
origin and the thickness of the internal layer. The growth of the error in origin 
in such step changes in roughness are shown in the lower plots in figures 4 and 21 in 
the d- and k-type grooved walls respectively. The location of the origin moves 
downwards from the tip of the roughness strip towards the bottom of the groove. 
An asymptotic value of E ,  about equal to k, is reached at a distance of about IOOOk 
in the k-type wall. In  the constant-wall-shear-stress region, the c-distribution in the 
d-type wall is expected to be linear as shown with a common virtual origin, but the 
scatter in the data is too large to confirm such a supposition. 

5.2. I d e m 1  layer 
When a smooth-flat-plate turbulent boundary layer encounters a rough surface, a 
rough-wall boundary layer starts developing within it. This is called the internal layer 
and has been studied in some detail in a k-type grooved wall by Antonia & Luxton 
(1971). By a dimensional argument they have shown that, in the region of a step 
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FIQURE 21. Error in o r i a  compared with the internal-layer thickness in the k-type grooved 
wall; U, = 28 m/s. 
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FIGURE 22. Internal-layer thickness in the d-type grooved wall; U ,  = 27.5 m/s. 

change in roughness, the flow can be described to a first order as adjusting from the 
smooth-wall level of the shear stress gradient (a~/ay) to that in the rough wall. This 
behaviour leads to the relationship U - yk The velocity profiles over the upstream 
smooth wall and the k-type grooved wall have been plotted in U / U ,  versuB $ 
coordinates to determine S,, the thickness of the internal layer. This thickness has 
been taken as the ‘knee ’ point; that is, the point at  which the rough- and smooth-wall 
half-power straight lines meet. The distributions of 8, are shown in figures 21 and 22 
for the k- and d-type grooved walls respectively. The variation in the k-type wall is 
described by 8, N x0-72 , as has also been found by Antonia & Luxton (1971). Figure 
22 shows that the 0.72-power growth rate of the internal layer holds in the d-type 
wall also and hence is independent of the type of roughness. Figure 21 shows that 
a 0.72-power line also describes the growth of the error in origin in the k-type wall. 
The similar growth rate of the internal layer and the error in origin suggests that 
e is indicative of the rate of adjustment of the wall shear stress following the step 
change in roughness. In  consistence with Rotta’s (1962) condition, the rate of 
self-preservation has not been reached in the k-type grooved wall in the region of 
nonlinear growth of E as shown in figure 21. 

6. Roughness function 
The roughness function was calculated from the following semilogarithmic 

relationship : 
U YU, AU - = 5.6 10g-+4.9-- 
u, V u, * 

The values of the multiplicative and additive constants recommended by the 1969 
Stanford conference on the computation of turbulent flows are 5.62 and 5.0 
respectively. However, the value<)in (6) have been used to conform with the notable 
rough-wall works of Clauser and Hama. The present roughness-function results 
obtained in the sandgrain and k-type grooved wall are compared with other authors’ 
results in figure 1. The limited sandgrain results from the present experiments agree 
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FIGURE 23. Roughness-function similarity in the transition regime; A, sandgrain - Colebrook & 
White (1937); 0, wire mesh - Hama (1954); 0, k-type two-dimensional groove - present data; 
-, equation (7). 

very well with those of Colebrook & White (1937). In  the fully rough regime, the 
present k-type-groove results fall on the same line as Moore (1951) and Perry & 
Joubert (see Perry et al. 1969). The groove dimension w l k  is about the same in all 
these experiments. However, the most significant result is that the upper limit of the 
transition regime (U, klv), in the two-dimensional roughness has indeed the lowest 
value. This provides strong support for the initial hypothesis that (U,  klv), drops 
with increasing aspect ratio of the roughness elements. Further evidence is presented 
in the following. 

If the above hypothesis is correct, it  implies that the apparently characteristic 
behaviours of the roughness function in the transition regime are actually similar 
except that they are scaled as appropriate to the particular aspect ratio of the 
roughness element. The distributions of the roughness function in the transition 
regime from the three roughnesses shown in figure 1 have been normalized by the 
appropriate (kU,/u), and the value of AUIU, at that Reynolds number. The result 
is shown in figure 23 which also includes a modified cosine curve fit, viz. 

The collapse of the data is reasonable. With the above normalization, the roughness 
function is seen to have a universal behaviour in the transition regime irrespective 
of the type of roughness. 

In  addition, consider the following. In  the fully rough regime, the roughness 
function versus the roughness-Reynolds-number relationship (figure 1) is given by 

k U, - 5.6 log,, (J-) + C, 
AU -- 
u, 

where C is a constant whose value depends on the type of roughness. As marked in 
9-2 
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FIGURE 24. Roughness function in the d-type grooved wall; the cross-hatchings indicate the data 
band of Perry et al. (1969) and the straight line through the hatchings represents equation (9). 

the fully rough regime in figure 1, C varies between the three roughnesses by Fl and 
F,. Further marks on that figure also show that once the upper limit of the transition 
regime (kUJv) ,  is known in any one roughness, the values of this limit in the 
remaining two roughnesses can be simply obtained from Fl and F,. Equation (8) 
indicates that only the slope of the semilogarithmic behaviour is universal. On the 
other hand, the present results indicate that the behaviour of the roughness function 
becomes self-similar in both the transition and fully rough regimes when the scaling 
factor (kUJv) ,  is taken into account. Thus, the upper limit of the transition-regime 
Reynolds number has an important place in the drag behaviour of k-type rough-wall 
boundary layers. 

In a d-type wall nothing is known about the transition regime. In the fully rough 
regime, Perry et al. (1969) have shown that roughness function correlates with eUJv 
rather than with kUJv as in a k-type wall. Figure 24 shows the present data plotted 
against eU,/v. The solid line shows Perry et aZ.'s relationship, viz. 

- AU = 5.76 l o g 1 , ~ ~ ) - 0 . 4 ,  
UT 

(9) 

in the range of their data indicated by the cross-hatchings. Note that Perry et al. 
estimated e by a different method and (9) represents a universal data correlation in 
both zero and adverse pressure gradients. The limited amount of present data indicate 
that (9) applies down to an EUJV value of about 5 and there may be a transitional 
rough regime below that value. 

7. A model of the transition regime in k-type roughness 
It is well accepted that the lower critical transition Reynolds number indicates the 

onset of vortex shedding by the roughness elements. But what is the physical 
significance of the upper critical transition Reynolds number ? Figure 1 shows that 
(kUJv) ,  decreases with increasing aspect ratio of the roughness elements. However, 
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FIGURE 25. Figure 27 of Furuya & Miyata (1972) ; variation of the upper and lower critical Reynolds 
numbers of a wake with aspect ratio. Configuration in region I : stable thread-like; region I1 : regular 
vortex loops; region 111: irregular vortex loops. Filled symbols show the transitional region; fl 
shows the oscillation of necklace vortex. 

this still remains a qualitative result. A quantitative verification of this could be 
obtained by making use of the stability diagrams obtained experimentally by Furuya 
& Miyata (1972). This is presented in the following. 

Furuya & Miyata (1972) have visually observed the stability of the wakes of 
isolated roughness elements submerged in laminar boundary layers. The roughness 
elements studied were spheres and cylinders of aspect ratios ( l l d )  of 1 to 00, their 
axes lying aligned along the span. Here 1 is the span and d is the diameter of the 
roughness element. The Reynolds numbers Be( u k  d / u )  at which the obstacles started 
shedding ‘regularly arranged’ horseshoe vortices and those at which the shedding 
became ‘irregular’ were noted. (Here u k  is the velocity at the roughness tip location 
in the absence of the roughness element.) In  the smoke pictures of Furuya & Miyata, 
the wake looks markedly chaotic/turbulent when the authors deemed the shedding 
irregular whereas it is laminar-like when the shedding is regular. Furthermore, the 
individual horseshoe vortices develop ‘wrinkles ’ when the shedding becomes irregular. 
It is likely that the wrinkling indicates the growth of higher harmonics and instability 
within the horseshoe vortex. The definition of the nature of the irregularity is 
admittedly imprecise at this stage and this aspect needs further investigation. But 
the appearance of the irregularity is unmistakable. The observations of Furuya & 
Miyata have been reproduced in figure 25. Their vortex loops are much like the 
horseshoe vortices found in low-Reynolds-number smooth-wall turbulent boundary 
layers (Head & Bandyopadhyay 1981). The necklace vortices, on the other hand, are 
more stable and their existence or the nature of their interaction with the horseshoe 
vortices in a rough-wall boundary layer is not known. In figure 25, between the 
roughnesses, note that the disparity between the values of the lower critical Reynolds 
number is much less than that of the upper critical Reynolds number. This behaviour 
is in accordance with the fact that the lower limit of the rough-wall transition regime 
varies only slightly for all ‘uniform’ roughnesses, but the upper limit varies 
considerably. The data on a sphere and cylinder of l / d  = 1 in figure 25 indicate that, 
when the aspect ratio is approximately the same, the contouring of the surface of 
the roughness elements has only a marginal effect on the critical Reynolds numbers 



256 P. R. Bandyopadhyay 

60- 
Calculated Lower Upper Measured 
- Cylinder P 0 Nikuradse (1933) - sandgrain 

0 Hama (1 954) - square wire mesh 

^^ Fully rough 

‘ I  Y 1 P Hvdraulicallv smooth 

0 2 4 6 8 10 12 14 16“ m 

I lk  

FIGURE 26. Relationship between upper and lower critical Reynolds numbers and aspect ratio 
of roughness elements in a rough-wall turbulent boundary layer. 

although the effect on the Strouhal number is known to be markedly high. Making 
use of the regular law of the wall, the two stability lines in figure 25 have then been 
cast into those shown in figure 26. 

The upper and lower solid lines in figure 26 indicate the variation of the upper and 
lower critical transition Reynolds numbers respectively with spanwise aspect ratio. 
The upper line has been compared with three data points from figure 1, viz. sandgrain, 
wire-mesh and two-dimensional grooves. The sandgrain is assumed to have an aspect 
ratio of one. More data is required to establish the behaviour for aspect ratios of less 
than one. In  Hama’s (1954) wire mesh, the aspect ratio changes over one pitch length 
and 3.6 has been taken as the mean value. Figure 26 shows that, for low aspect ratios, 
the lower critical line slightly overpredicts. The agreement between the measurements 
and the upper critical line is good. Therefore, we conclude that, in addition to the 
dependence of (kU,/v) ,  on Ilk,  the figire also shows that the values of (kU,/v) ,  in 
figure 1 correlate with the critical Reynolds numbers observed in the wakes of isolated 
roughness elements lying submerged in laminar boundary layers. A practical 
implication of the results is that, if the presence of roughness is unavoidable and 
a lower drag is desired, figures 1 and 26 show that a higher (kU, / v ) ,  should be 
aimed for. This can be achieved by making the roughness elements ‘more three- 
dimensional’. The benefit will be noticeable below an aspect ratio of 6 to 8. 

After the present work was completed, Dr P. S. Klebanoff drew the author’s 
attention to the work of Smith & Clutter (1959) who examined the laminar- 
to-turbulent transition behind isolated roughness elements lying submerged in an 
otherwise laminar boundary layer. In their compilation of various authors’ data, the 
‘three-dimensional roughness has shown greater values of Rkcrit than those for the 
two-dimensional roughness’ (p. 236). Here, Rkcrit is defined as Uk k / v .  The equivalent 
of Rkcrit in the present study is the lower critical roughness Reynolds number 
(U,  k / v ) ,  which is indicated by the lower curve in figure 26. The trend in the present 
results and those of Smith & Clutter are in excellent agreement. (The reader should 
be cautioned that the results described in the Conclusions section of Smith & Clutter’s 
paper (p. 243) contain a typographical error which gives a wrong sense of the trend.) 

Further research is required to determine the physical significance of the upper 
critical Reynolds number in both an isolated roughness element and in a regular 
rough wall. In  the case of an isolated roughness element in a laminar boundary layer, 
it  is known that after the lower critical Reynolds number has been reached, increasing 
free-stream speed moves the point of transition closer to the roughness element 
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(Smith & Clutter 1959). Therefore, it seems likely that the previously mentioned onset 
of irregularity in the vortex-shedding experiments of Furuya & Miyata (1972) is a 
result of an interaction with the randomness accompanying transition. If this 
speculation is correct then (U ,k /v ) ,  indicates the Reynolds number at which 
‘transition’ takes place almost right behind the roughness elements. The extent of 
the roughness-function transition regime (figure 1 )  for any roughness can now be 
viewed as an indicator of the rate, which is characteristic of the roughness, at which 
transition moves upstream towards the roughness elements. 

8. Vortex shedding in rough walls 
In the previous sections it has been shown that the drag at a rough wall is closely 

related to the nature of the wake behind a similar roughness element lying submerged 
in an otherwise laminar boundary layer. This gives rise to the practically meaningful 
question : what is the relationship between drag and vortex shedding in a rough wall ? 
This is addressed in the following. 

In recent times, considerable effort has been devoted to unravelling the nature of 
the quasi-periodic turbulence-production cycle in smooth-flat-plate boundary layers. 
A similar cycle is in existence in a sandgrain-roughened wall also and the structure 
in most of the boundary layer is much the same as in a smooth wall (Grass 1971 ; 
Bessem & Stevens 1984). The transport of momentum and heat in rough walls would 
be decided by the quasi-cyclic nature of the wake of the roughness elements and 
therefore an investigation of the flow in the vicinity of the roughness elements would 
be useful. However, excepting the flow visualization work of Townes & Sabersky 
(1966) in two-dimensional square grooves, the flow in the neighbourhood of the 
roughness elements has not received much attention. 

8.1. Measurement of the time period of vortex shedding 
(i) Velocityjuctuations. To obtain an impression of the degree of periodicity present 
in the velocity fluctuations, the linearized signal from a single hot wire, located within 
the groove or behind a sandgrain, was examined while increasing the free-stream 
speed so that the state of the boundary layer changed gradually from laminar to fully 
rough. Figure 27 shows examples of the velocity fluctuations at low Reynolds 
numbers. The velocity traces shown in figure 27 a (i to iv) are not taken simultaneously 
Figure 27 shows that the periodicity is clearer in the grooves than behind the 
sandgrain. Note also that the amplitude of the velocity fluctuations is smallest within 
the grooves. Figure 27a (i to iv) show that as the normal distance from the roughness 
elements is increased, the periodicity becomes progressively submerged in the 
background ‘noise’. This indicates that the time period of vortex shedding can best 
be detected close behind the roughness elements. 

(ii) Short-time autocorrelation. Although the velocity fluctuations on the oscilloscope 
were observed to be periodic, the rerise in the long-time autocorrelation tended to 
be rather weak. This implied that the vortex shedding was fairly periodic over short 
times and also that this time period varied randomly over a rather wide range over 
a long time. Thus, it was thought prudent to determine the mean time period of 
vortex shedding from many measurements of short-time autocorrelation. Figures 
28-30 show examples of the distribution of short-time autocorrelation in the three 
rough walls at various speeds. At low speeds, only the d-type roughness was found 
to shed vortices in a rather low-noise background. About 3 to 5 vortices were shed 
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FIQURE 27. Quasi-periodicity in the velocity fluctuations in close proximity to the roughness 
elements at low roughness Reynolds numbers; 2 = 66 cm. (a) k-type grooved wall ; Urn = 3.66 m/s; 
5 = 66; c/w = 0.4: (i) yb/k = 0.77; (ii) 5.2; (iii) 9.8; (iv) 18.2. (b)  Sandgrain (grit 36); Urn = 3.87 
m/s; y, /k  = 1. (c) d-type wall: Urn = 5.58 m/s; c/w = 0.5; yb/k = 1. 
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FIGURE 28. Distributions of short-time autocorrelation of velocity fluctuations in a k-type 
grooved wall; x = 66 cm. 
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FIGURE 29. Short-time autocorrelation in a sandgrain-roughened wall; sandgrain size is grit 36; 
x = 66 cm; U ,  = 4.9 m/s; record length = 25.6 ms; yb/k = 1.0. 

within the ‘short time’. In  this sense, the short-time autocorrelations were much like 
flow visualization when the sheddings can be individually observed. At each 
free-stream speed examined, 100 correlation distributions and T, the times to the first 
clear rerise therein, were stored in the computer. 

(iii) Histogram. Figures 31-33, show examples of the histogram of the time period T. 
The histograms are skewed similar to the hydrogen-bubble-bursting data of Kim, 
Kline & Reynolds (1971). The standard deviation, cr is large - about 4 of the mean 
time period F; a similar observation has been made by Kim et d. from visual 
observations of the periodicity of bursting in a smooth wall. 

(iv) Long-time autocorrelation. Several examples of the distribution of long-time 
autocorrelations of the velocity fluctuation signal in the rough walls are shown in 
figures 34-36. The time length of the record in ‘long time’ is 100 times larger than 
that in the previous ‘short-time’ data. In  comparison to that in Kim et al.’s study 



260 P.  R.  Bandyopadhyay 

- 1  1.1.1.11 
0 0.04. 0.08 0.12 

I (4 

(b) U, = 12.8 m/s 

-0.4 I I b 

0 0.001 0.002 
t 6) 

FIQIJRE 30. Short-time autocorrelation in a d-type grooved wall; x = 66 cm; yb/k = 1.0; 
c/w = 0.5; (a) record length = 5.12 ms; ( b )  12.8 ms. 

on bursting in a smooth wall, the number of vortices shed in the rough walls during 
a ‘long time’ is several times higher. The mean values of the time period obtained 
from short-time autocorrelation are given in figures 34-36. The long-time auto- 
correlation has a tendency to rerise at  these time intervals. 

Although it is well accepted that the lower critical value of Re, represents the onset 
of vortex shedding in a distributed roughness, there could be some question 8s to 
whether the structures going past the hot wire at the very lowest Reynolds numbers 
and particularly in the grooved walls can be truly described as vortices. A priori, the 
possibility cannot be ruled out that some of these structures could well be jets or even 
waves. In the present context, the exact nature of the structures does not seem to 
be crucial; the fact that a quasi-periodic phenomenon is in play justifies the study 
of its mean time period. After completing the present work, comparisons were made 
between the present measurements of T and those made recently by Klebanoff, 
Cleveland & Tidstrom (1987) behind isolated roughness elements (hemispheres and 
cylinders) in a laminar boundary layer. By simultaneous measurements using two 
hot wires, they have identified the shed structures to be vortices. In  the present study, 
p i s  inversely proportional to cT;64 in both the varieties of k-type wall and to Vm 
in the d-type wall. On the other hand, Klebanoff et al. have found that pis inversely 
proportional to UZ,. The similar values of the velocity exponent suggest that the 
structures involved in the present study may also be vortices. 

8.2. Strouhal-number variation with Reynolds number 
The Strouhal number St of vortex shedding in rough walls can be defined as 

where p i s  the mean time period of vortex shedding. The variation of St with Re, 
is shown in figure 37. Combining figures 1 and 37, the relationship between drag and 
vortex shedding can be obtained. 
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FIGURE 31. Histograms of time to first rerise in distributions of short-time autocorrelation of 
velocity fluctuations in a k-type grooved wall; x = 06 cm; yb/k = 1;  c /w  = 0.5. 

The measurements of Townes & Sabersky (1966) in square-grooved roughness, 
ranging in size from t in .  x i  in. to 1 in. x 1 in., are included in figure 37. They 
measured the mean frequency f( = 27t/F) by flow visualization. Within the cavity, 
four typical flow phases were identified. These phases, termed ‘strong exchange’, 
‘weak exchange ’, ‘inflow ’ and ‘ divide ’, appeared in random succession. They defined 
f as the mean frequency of phase change. The St vemus Re, relationship was found 
to be linear up to an Re, of 150. For Re, > 150, the cavity flow w&8 qualitatively 
different ; a ‘well established, fairly steady vortex ’ occupied most of the cavity. The 
cavity flow at the downstream end was, however, found to ‘flutter’ and in this range 
of Re,, f represents the mean rate of flutter. The Strouhal number was found to be 
constant and equal to 10 for Re, > 150. 

The best-fit linear relationships between St and Rek, for the present data and those 
of Townes & Sabersky (1966), are shown in figure 37. The Strouhal numbers in the 
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FIGURE 32. A typical histogram of time to first rerise in distributions of short-time autocorrelation 
of velocity fluctuations in a d-type wall; x = 66 cm; yb/k = 1.2; c/w = 1.2; total record 
length = 2.56 s; T =  6.01 ms; u = 2.81 ms. 

FIGURE 33. A typical histogram of time to first rerise in distributions of short-time autocorrelation 
of velocity fluctuations in a sandgrain (grit 36)-roughened wall; x = 66 cm; record length = 5.12 a; 
p= 12.49 8 ;  u = 4.24 s .  
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FIGURE 34. Distributions of long-time autocorrelation of velocity fluctuations in a k-type grooved 
wall; x = 60 cm; yb = k; record length = 2.56 s. 

present data are slightly higher. This may be due to the differences in the techniques 
of measurement. In  the measurements of the time period between bursting in 
smooth-flat-plate boundary layers differences are known to exist depending on the 
technique of measurement. In  any case, figure 37 shows the interesting result that 
the slope of the St versus Re, line is about the same in the present data and in the 
work of Townes & Sabersky. Furthermore, this slope is independent of the geometry 
or type of the roughness element. The physical significance of the slope is that its 
square root U,(T/v)t can be described as a stability parameter (Black 1968). Note 
that it does not contain k. In the absence of a rigorous theoretical stability analysis, 
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FIQURE 35. Distributions of long-time autocorrelation of velocity fluctuations in a d-type wall; 
x = 66 cm; yb/k = 1, c /w = 0.5. 
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FIGURE 36. A typical distribution of long-time autocorrelation of velocity fluctuations in a 

sandgrain roughened (grit 36)-wall; z = 66 om. 

Black haa shown empirically that the stability parameter in a smooth flat plate is 
determined by the two constants in the law of the wall, which implies that the 
parameter has a universal value. Black’s theory envisages a periodic vortex train 
much as in the wake of a roughness element. Using the constants in (6)’ Black’s theory 
yields a value of 10.5 for the parameter. A line with this slope is also shown in figure 
37 to aid comparison. The absolute location of this line dong the ordinate is not 
important. It is interesting to see that the value of Black’s stability parameter agrees 
rather well with 10.0 in the data of Townes & Sabersky and 9.2 in the present data. 
The universal nature of the stability parameter may be related to the following: first, 
the structure of the boundary layer in rough and smooth walls is similar; secondly, 
the smooth-surface law of the wall applies to a rough wall also. The latter, although 
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FIQIJRE 37. Universal nature of the stability parameter lJ,(F/v)k Present data: ., k-type groove; 
*, d-type groove; +, Sandgrain grit 36. Townes & Sabersky (1966) d-type groove: 0,t in. x 4 in.; 
0, in. x f  in.; +, din. x i  in.; A, 1 in. x 1 in. 

widely used, has never been independently established and the present results can 
be considered as a pointer in that direction. 

9. Conclusions 
The conclusions of the present investigation may be listed as follows. 
(i) A self-preserving state can be reached in boundary layers developing over both 

d-type-groove and sandgrain roughnesses. 
(ii) The method of velocity-profile matching can be used to estimate the local wall 

resistance in a zero-pressure-gradient rough-wall turbulent boundary layer having a 
low free-stream turbulence level. 

(iii) The internal layer grows at the same rate no matter whether the step change 
in roughness is from smooth to d-type or smooth to k-type grooved wall. 

(iv) In  the k-type walls, the upper critical transition Reynolds number (kUJu),  
determines the roughness function behaviour in both the transition and fully rough 
regime. The value of (kUJu), drops with increasing aspect ratio of the roughness 
elements. The lower and upper critical Reynolds numbers correlate with the Reynolds 
numbers that indicate the onset and the development of irregularities respectively 
in the vortex shedding behind isolated roughness elements lying submerged in 
laminar boundary layers. 

(v) The drag of a k-type rough wall can be reduced by lowering the spanwise aspect 
ratio of the roughness elements. The results would be noticeable below an aspect ratio 
of about 6 to 8. 

(vi) The vortex shedding in rough-wall boundary layers is described by a constant 
value of the parameter U,(F/u)t irrespective of the type of roughness. 

The author is indebted to National Aeronautics and Space Administration 
for financial support (NAS1-17296). He is also grateful for the interest shown by 
Mr D. M. Bushnell in the work, and to Mr R. D. Watson for assistance. 
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